skip to main content


Search for: All records

Creators/Authors contains: "Hu, Y. Charlie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this paper, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study,we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less
    Free, publicly-accessible full text available June 18, 2024
  2. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this poster, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study, we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less
    Free, publicly-accessible full text available June 18, 2024
  3. Edge-assisted AR supports high-quality AR on resource-constrained mobile devices by offloading high-rate camera-captured frames to powerful GPU edge servers to perform heavy vision tasks. Since the result of an offloaded frame may not come back in the same frame interval, edge-assisted AR designs resort to local tracking on the last server returned result to generate more accurate result for the current frame. In such an offloading+local tracking paradigm, reducing the staleness of the last server returned result is critical to improving AR task accuracy. In this paper, we present MPCP, an online offloading scheduling framework that minimizes the staleness of server-returned result in edge-assisted AR by optimally pipelining network transfer of frames to the edge server and the Deep Neural Network inference on the edge server. MPCP is based on model predictive control (MPC). Our evaluation results show that MPCP reduces the depth estimation error by up to 10.0% compared to several baseline schemes. 
    more » « less
    Free, publicly-accessible full text available May 8, 2024
  4. The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28×, 1.56×, and 1.32× compared to the prior-art history-based predictor. We further analyze the experimental results to give intuitive explanations to why learning in space outperforms learning in time in these experiments. Finally, we show how sampling-based learning can be extended to schedule DAG jobs and achieve similar speedups over the prior-art history-based predictor. 
    more » « less
  5. Cameras are increasingly being deployed in cities, enterprises and roads world-wide to enable many applications in public safety, intelligent transportation, retail, healthcare and manufacturing. Often, after initial deployment of the cameras, the environmental conditions and the scenes around these cameras change, and our experiments show that these changes can adversely impact the accuracy of insights from video analytics. This is because the camera parameter settings, though optimal at deployment time, are not the best settings for good-quality video capture as the environmental conditions and scenes around a camera change during operation. Capturing poor-quality video adversely affects the accuracy of analytics. To mitigate the loss in accuracy of insights, we propose a novel, reinforcement-learning based system APT that dynamically, and remotely (over 5G networks), tunes the camera parameters, to ensure a high-quality video capture, which mitigates any loss in accuracy of video analytics. As a result, such tuning restores the accuracy of insights when environmental conditions or scene content change. APT uses reinforcement learning, with no-reference perceptual quality estimation as the reward function. We conducted extensive real-world experiments, where we simultaneously deployed two cameras side-by-side overlooking an enterprise parking lot (one camera only has manufacturer-suggested default setting, while the other camera is dynamically tuned by APT during operation). Our experiments demonstrated that due to dynamic tuning by APT, the analytics insights are consistently better at all times of the day: the accuracy of object detection video analytics application was improved on average by ∼ 42%. Since our reward function is independent of any analytics task, APT can be readily used for different video analytics tasks. 
    more » « less
  6. In Video Analytics Pipelines (VAP), Analytics Units (AUs) such as object detection and face recognition running on remote servers critically rely on surveillance cameras to capture high-quality video streams in order to achieve high accuracy. Modern IP cameras come with a large number of camera parameters that directly affect the quality of the video stream capture. While a few of such parameters, e.g., exposure, focus, white balance are automatically adjusted by the camera internally, the remaining ones are not. We denote such camera parameters as non-automated (NAUTO) parameters. In this paper, we first show that environmental condition changes can have significant adverse effect on the accuracy of insights from the AUs, but such adverse impact can potentially be mitigated by dynamically adjusting NAUTO camera parameters in response to changes in environmental conditions. We then present CamTuner, to our knowledge, the first framework that dynamically adapts NAUTO camera parameters to optimize the accuracy of AUs in a VAP in response to adverse changes in environmental conditions. CamTuner is based on SARSA reinforcement learning and it incorporates two novel components: a light-weight analytics quality estimator and a virtual camera that drastically speed up offline RL training. Our controlled experiments and real-world VAP deployment show that compared to a VAP using the default camera setting, CamTuner enhances VAP accuracy by detecting 15.9% additional persons and 2.6%--4.2% additional cars (without any false positives) in a large enterprise parking lot and 9.7% additional cars in a 5G smart traffic intersection scenario, which enables a new usecase of accurate and reliable automatic vehicle collision prediction (AVCP). CamTuner opens doors for new ways to significantly enhance video analytics accuracy beyond incremental improvements from refining deep-learning models. 
    more » « less
  7. The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28x, 1.56x, and 1.32x compared to the prior-art history-based predictor. Finally, we show how sampling-based learning can be extended to schedule DAG jobs and achieve similar speedups over the prior-art history-based predictor. 
    more » « less
  8. We revisit the performance of a canonical system design for edge-assisted AR that simply combines off-the-shelf H.264 video encoding with a standard object tracking technique. Our experimental analysis shows that the simple canonical design for edge-assisted object detection can achieve within 3.07%/1.51% of the accuracy of ideal offloading (which assumes infinite network bandwidth and the total network transmission time of a single RTT) under LTE/5G mmWave networks. Our findings suggest that recent trend towards sophisticated system architecture design for edge-assisted AR appears unnecessary. We provide insights for why video compression plus on-device object tracking is so effective in edge-assisted object detection, draw implications to edge-assisted AR research, and pose open problems that warrant further investigation into this surprise finding. 
    more » « less
  9. Edge-assisted Augmented Reality (AR) which offloads computeintensive Deep Neural Network (DNN)-based AR tasks to edge servers faces an important design challenge: how to pick the DNN model out of many choices proposed for each AR task for offloading. For each AR task, e.g., depth estimation, many DNN-based models have been proposed over time that vary in accuracy and complexity. In general, more accurate models are also more complex; they are larger and have longer inference time. Thus choosing a larger model in offloading can provide higher accuracy for the offloaded frames but also incur longer turnaround time, during which the AR app has to reuse the estimation result from the last offloaded frame, which can lead to lower average accuracy. In this paper, we experimentally study this design tradeoff using depth estimation as a case study. We design optimal offloading schedule and further consider the impact of numerous factors such as on-device fast tracking, frame downsizing and available network bandwidth. Our results show that for edge-assisted monocular depth estimation, with proper frame downsizing and fast tracking, compared to small models, the improved accuracy of large models can offset its longer turnaround time to provide higher average estimation accuracy across frames under both LTE and 5G mmWave. 
    more » « less
  10. null (Ed.)